Smart, Safe and Secure Platform (S3P)

Software execution platforms for dependable applications

Industrial Internet of Objects and Operators (2IDO)

Industrial telecom network fitting for industrial constraints
Smart, Safe and Secure Platform (S3P)
Challenges

Thanks to always smaller and cheaper electronics, software is about to be embedded into tenths of billions devices every year
- Compared to a total of few billions, cumulated over the past 15 years

This is not a seamless evolution, this is a revolution
- Impacting all industrial sectors: consumer, home automation, transport, energy, healthcare, …
- Providing software vendors with a combination of technical challenges and business opportunities

Dependability (including security and privacy) remains a major concern
- If not properly addressed, can be a showstopper
Software execution platform: key enabler

- Basically 2 solutions at the moment:
 - Google (Android) in a quasi-monopolistic position
 - A myriad of proprietary, non-interoperable solutions addressing niche markets

- S3P aims at providing an alternative by creating an ecosystem of providers, at national then at European level, cooperating for stronger positions in the worldwide competition
S3P Software Platform

- **Smart**: technically and economically efficient
- **Safe & Secure**: compatible with system integrators safety/security requirements, ensuring privacy and trust to end-users
- **Platform**: a consistent set of run-time software stacks and design tools
Consortium

- **Software vendors** addressing safety/security markets with high-quality, highly innovative solutions:
 - Esterel Technologies, IS2T, Krono-Safe, PrismTech, Prove&Run, SYSGO, TrustInSoft

- **End-users** from different domains:
 - Airbus, Alstom, Altran, AXA, Continental Automotive, Eolane, Safran, Schneider Electric, Sorin, SurTec, Thales, Withings (Nokia)
 - Advisory board including more major potential customers

- **Contribution from hardware providers**
 - ST Microelectronics, Freescale

- **Industrial valorization of academic contributions**
 - CEA (design tools), TelecomParisTech (run-time support)
Technical Scope

Microcontrollers with lightweight OS

General purpose multicore processors

S3 Platform

Embedded processors and SoC

Connectivity (2IDO)

Hypervisor/Virtualization
Technical challenges

- Proven separation mechanisms for programs and data
- Remote administration and update
- Re-usable secure components
- High-level application models and consistent programming paradigms
- Deterministic behavior and latency bounds
- Support across hardware evolutions
- Hardware platform heterogeneity
Planned results

- Agreed architectural principles and interfaces: the S3P « label » and open de-facto standard

- Mature (TRL7) software building blocks from different vendors, compliant with the S3P label

- Demonstration on 15 industrial test cases:
 - Of the maturity and integration of the building blocks
 - Of the innovation potential for applications
Expected impact

- Strong S3P ecosystem (not only at national but also at European level)

- Competitive, perennial European alternative to dominant software execution platform, with native support for safety and/or security

- Significant increase of worldwide market shares for this software execution platform

- Competitiveness in traditional industrial application domains (e.g., transportation)

- Emergence of new actors bringing new trustable services, from the cloud to the sensors/actuators, (e.g., home automation)
<table>
<thead>
<tr>
<th>S3P Use Cases</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIRBUS</td>
</tr>
<tr>
<td>ATC on distributed platform</td>
</tr>
<tr>
<td>ALSTOM</td>
</tr>
<tr>
<td>Rail signaling on new generation platform</td>
</tr>
<tr>
<td>SAGEM</td>
</tr>
<tr>
<td>Connected control platform for airborne equipment</td>
</tr>
<tr>
<td>Schneider Electric</td>
</tr>
<tr>
<td>Smart Speed Drive</td>
</tr>
<tr>
<td>THALES</td>
</tr>
<tr>
<td>Secured multi-domain gateway</td>
</tr>
<tr>
<td>altran</td>
</tr>
<tr>
<td>Real-time, distributed, reconfigurable systems</td>
</tr>
<tr>
<td>E-Health platform</td>
</tr>
<tr>
<td>Platform for digital, virtual and resources efficient factories</td>
</tr>
<tr>
<td>freescale</td>
</tr>
<tr>
<td>Freescale semiconductor</td>
</tr>
<tr>
<td>Secured automotive entertainment system</td>
</tr>
<tr>
<td>Multipurpose multiservice box for cars</td>
</tr>
<tr>
<td>Secured gateway for 3D printing</td>
</tr>
<tr>
<td>SurTec</td>
</tr>
<tr>
<td>Smart home monitoring and alert system</td>
</tr>
<tr>
<td>ST</td>
</tr>
<tr>
<td>Multiprotocol gateway</td>
</tr>
<tr>
<td>Smartwatch</td>
</tr>
</tbody>
</table>
Industrial Internet of Objects and Operators (2IDO)
Challenges

➢ Thanks to always smaller and cheaper electronics, industries have the capacity to address major concerns:
 • Monitoring and geo-location of key assets
 • Protection of operators
 • Improvement of processes

➢ Transportation of data in industrial constraints requires a dedicated “industrial internet”
 • Efficient
 • Robust
 • Economically accessible
2IDO Network

- **Industrial Internet**: new radio network consistent with industrial constraints

- **Objects**: compatible with a wide range of sensors, S3P concentrators, connected machines

- **Operators**: connected/augmented operators thanks to a set of sensors and additional capacities
Consortium

- **Network vendors** developing LoRa modulation based network elements:
 - Altran Connected Solutions, Idosens

- **End-users** from different domains:
 - Airbus Safran Launcher, Altran, Areva, Arkema, Safran, Total
 - Advisory board including more major potential customers

- **Industrial valorization of academic contributions**
 - CEA LAAS (battery life)
Technical Scope

- LoRa 2.4GHz wireless connectivity
- Connectivity to IaaS/PaaS
- Connectivity (2IDO)
- Indoor geolocation

S3P Platform

Devices → Concentrateurs → Cloud
Technical challenges

- Autonomy of devices
- Indoor geolocation
- Free worldwide frequency
- Running without GPS
- High and low bandwidth
- Bi directional
- Constraint environment
- Network without subscription
- Low cost
- Security
- Non intrusive
Planned results

- 2IDO introduces a new standard based on LoRa modulation and international 2.4GHz frequency
- The main advantages of using this network are:
 - High penetrability rate
 - Long range indoor (tested in nuclear power plants).
 - 2.4GHz is free and international
 - Low cost chipsets allowing various and wide deployments
 - Compatible with LoRaWan, Sigfox, 3/4G, IP based networks
 - Compatible with RFID
- Multiple applications can be addressed:
 - Precise indoor asset tracking (a few meters) thanks to ToF technology
 - Geo-fencing
 - Real time inventory management
2IDO use cases

Real time tools monitoring
Assembly line efficiency monitoring
EtoE real time geo location of tools between the factories and inside the factory
Measurement of assembly line time cycles to improve efficiency and reduce wasted time

Assets geo location (tools)
Operators emergency geolocation
Open/closed valves monitoring
Real time geo location of assets inside the factory/oil rig
Monitoring of operators in case of emergency/evacuation
Planning and monitoring of valves closing and opening

Connected operator
Predictive maintenance
Objects traceability
Monitoring of operators to reduce muskulo-skeletal disorders
Optimization of machines availability thanks to extended predictive maintenance
Tracing R&D samples inside the factory

Operators emergency geolocation
Open/closed valves monitoring
Transmission of text messages through heavy walls
Monitoring and geo location of operators in case of emergency/evacuation
Planning and monitoring of valves closing and opening
Sending text messages (procedures, alerts, events) to operators working in NPPs