The f-word in systems engineering OOSe.

The pitfalls of choosing the wrong
modeling element for your modeling purpose

Axel Scheithauer
oose Innovative Informatik eG, Hamburg
SWISSED - 18. September 2023

Model Based Software
and Systems Engineering
Business process modeling

AXxel Scheithauer

Trainer, Consultantand Coach

@ linkedin.com/in/axelscheithauer
@ xing.to/Axel_Scheithauer
o @AxelScheithauer

OVMG i &

mmm Object MODELING ®
Management LANGUAGE-.

Group.

oose.

Agenda

R

© 0 N o A~ W N

Functional Analysis

Allocating behavior to structure

Some problems

What it actually means

Shortcomings of activities for the Fword
My solution

My definition of the F~word

A real example

Conclusion

Result of a functional analysis of one use case

" act [Activity] Functiond [[Function]/J

Functiond A Function2 N Function3 A
y y 4 i
-;r-.liheﬁpeu'rﬁ:a:iun::[J-IIH"‘ | :liT: | aitr signall B signa atir1 fl:lrinﬂinp-ut}H'
: pari E, =
2) part | -) F—Ty)
- r
LN A

I tried to come up with the simplest example, I can think of: Three
activities, where one has an object flow to another one, which sends a
signal to the third.

oose.

What are the semantics of this model?

" act [Activity] Functiond [[Function]/J

Functioni

' ::ﬁ'ﬂdEﬁp;i'ﬁ:I'I]n::- [J'IE'"‘ |

rh

pari

Function2

g |

e |5

®

Function3

gignali
-~
-'.-l-

., Signalt

:| ath’ﬂl f|:| rinti input) Hl
-, "

We can simulate the model to explore the semantics (Demo)
(we can also read the lengthy explanations in the SysML, UML and fUML-specifications)

oose.

Allocating behavior to structure

wactivitys
Fumnctiond
'T T T
I
gactivitys | sactivitys sactivitys
Functioni Function2 Function3
T |) T
etraces

| ctraces | etraces |:tran:e:a

gfunctional group»
Block1

gfunctional group»
Block2

«functional group»
Block3

«functional group»
Block0

In the FAS-method, f-words are grouped and then assigned to functional

blocks (not shown here).

oose.

Functional architecture

ibd [System] BlockD J

: Block1

&ProxXys

FP_pari : F5_Integer

: Block3

: Block2

A Operties
WO DRODETTIES

. Integer

HProxys
FP_pari : F5_Integeri

AT OIS S S
W DRODETTIES

. Integer

The FAS-plugin automatically creates a functional architecture.

oose.

Missing elements

ibd [System] Block) J

: Block1

: Blockd

: Block2

Eproxys

EProXys

FP_par1 : F5_Integer

flow properties
. Integer

FP_par1 : F5_Integer1

flow properties
. Integer

Block@ is the system. It doesn’t have an own behavior. The behavior
assigned to it is the description of the use case. The interface
between Block2 and Block3 is missing, because the plugin currently
doesn’t support it (it’'s a bit more complicated to evaluate).

oose.

This leads to following model

wactivity»
Function
Y -]
- | -
wactivity s sactivitys >
.) clivity s
| ad
Functioni | Function? Function3
I
cvallocates | caliocates \l:alluc.ataa ._1,.'3|bcﬂt33
«functional blocks | wfunctional blocks «functional blocks
Block1 | Block? Block3
\r
«functional blocks
Block0
«functional blocks
Systemi

All activities are behavior that needs to be allocated to some
structure. All structure blocks together belong to a system.

Of course, a creative stretching of the SysML rules is completely fine. The point is, you

must know the rules to break them.

oose.

A simulatable model of the architecture

ibd [functional block] System fJ

: BlockO : Block3

operations '
function0(}
act functiond P .
I) | b)

|' ‘function1 via b'1"i:| output E‘

function2 via b2 |
s o 1: BlockJntertace

flow properfies
flow1 : Signall
b1 : ~Blockiinterface b2 : ~BlockZinterface
J_‘ b3 : ~Block3interface

parl

i: Block1lnterface i1 : Block2Interface
—) operations I _ operations ILI
function1(cutput : Intzger) function2(par1 : Integer }
: Block1 : Block2

act Function2
Signalt via b3 T
o

All activities now have their home. I manually created the interface
between Block2 and Block3. Block@ now has the responsibly to invoke

behaviors on Block1 and Block2. This was not the interpretation in the
first example.

This can be simulated (Demo).

oose.

Shortcomings of activities for the f-word

Note: The following should not be understood as critique of the FAS
method. After all, it is a quite successful method that has proven
its worth. However, I see some weak points, and try improve on
them.

« The role of the use case activity is unclear (at least to me)

« The activity diagrams define semantics, which are not needed for
the functional architecture: Invocation, control flows and nodes.

 Added complexity and work

« Activities are used for three incompatible and not clearly

distinguished purposes: describing the steps of a use case, describing
algorithms, specifying the flows between behaviors.

oose.

My solution

ibd USECESED;J

» Function1Provider .- — = — = :Function2Provider - — — — = :Funclion3Provider
sitemFlow s witemFlow s

A use case analysis describes the function providers and the items

flowing between them. Each function provider is responsible for exactly
one activity.

This avoids the overspecification activity diagrams simply require. It

is easy to create and it is easy to create a functional architecture
from it.

This can not be simulated (maybe there is a way - I’'m still experimenting)
* I also heard this concept being called “function enabler”.

oose.

Allocating behavior to structure

wfunctionProviders wfunctionProviders wfunctionProviders
Function1Provider Function2Provider Function3Provider
| waliocates | wallocates | wallocates
| iy |
sfunctional blocks sfunctional blocks sfunctional blocks
Block1 Block2 Block3

valuel : Integer = 41

As before, behavior needs to be allocated to structure. This time the
behavior is hidden inside its host, the function provider.

oose.

The functional architecture

ibd [functional block] System1 J_J

: Block1 : Block3

Ci=valuet N . g)
Ei after (6s) | valuet=value1+1 ?:“} Signalt H print{input)

p1 : ~Integerinterface
L] flow properties ITl
i : Integer [*]
p2 : Signalinterface
’Jf‘1 . Integerinterface p2 : ~Signallnterface
flow properties
Ii' 51 : Signall

: Block2

“\\ wAcceptChangeStructuralFeatureEvent&ctions %{,-“ readStructuralFeatures J:l{
/} = — -
~ %,

Signall via p2

Block® doesn’t exist anymore, since no activity was used to describe
the flows between behaviors.

I think, this is, what the original diagram was supposed to describe.

This can be simulated (demo)

oose.

Combining function providers

«functionProvider» «functionProviders
Function1Provider Function2Provider
AN 7
s\, «allocate» «allocate» /

N\ 7
N ¥
«functional block»

Block1

flow properties
in input1 : ValueType1
out output1 : ValueType1
cut output2 : ValueType2

In general, two or more function providers will get allocated to the
same functional block. The FAS-method has some heuristics which ones
should be combined.

This functional block define the in- and outputs and system states it
is responsible for.

oose.

Specifying function providers

«functionProvider»
Function1Provider

flow properties
n input1 : ValueType1
out output2 : ValueType2

state : ValueType1

«functionProvider»
Function2Provider

flow properfies

out output1 : ValueType1

values
state : ValueType1

N 4
\, «allocate» «allocate»
X /
A L

«functional block»
Block1

flow properties

in input1 : ValueType1
out output1 : ValueType1
out output2 : ValueType2

11111

state : ValueType1

Actually the in- and outputs are deduced from the function providers.
So they could be modeled with these values in the first place. And with

the state as well.

oose.

Specializing function providers

efunctionProviders «functionProviders
Function1Provider Function2Provider
flow properiies flow properiies
in input1 : ValueType1 out output1 : ValueTypel
out output2 : ValueType2 .
values state : ValueTypel

state : ValueType1

« functional blockx
Block1

If the function providers already specify everything, we might as well
the block inherit the properties from them.

Both function providers have the same state. This is a reliable
heuristics for combining them.

oose.

My definition for the f-word

efunctionProviders
Function1Provider
flow properiies
in input1 : ValueType1
out output2 : ValueType2

k =

state : ValueType1

a functionProviders
Function2Provider

i -
flow properties

out output1 : ValueTypel

state : ValueTypel

« functional blockx
Block1

VDI 2227: A Function
is a solution agnostic
relationship between
input, state and
output of a system

Well, maybe the function provider is the long sought after formal

definition for the f-word. Much to my surprise, I found that the VDI
2221 uses function with the same meaning here.

Note: I'm not saying, that this is the only correct definition and everybody else is
mistaken. I think it is one, that is helpful for the FAS-method. Maybe also for other

methods.

oose.

A real example

<tbd>

oose.

Conclusion

afunctionProviders
Function1Provider
flow properties
in input1 : YalueType1
cut output2 : ValueType2

ValLES

state : ValueTypei

Axel.Scheithauer@oose.de

In MBSE you need to define a function formally with the help of a modeling language.
For the FAS-method I think the function provider is a useful definition.
Other methods might have other definitions.

It is important to carefully select a fitting modeling element. Otherwise, the model will
contain accidental complexity.

oose.

	Folie 1: The f-word in systems engineering
	Folie 3
	Folie 4: Agenda
	Folie 5: Result of a functional analysis of one use case
	Folie 6: What are the semantics of this model?
	Folie 7: Allocating behavior to structure
	Folie 8: Functional architecture
	Folie 9: Missing elements
	Folie 10: This leads to following model
	Folie 11: A simulatable model of the architecture
	Folie 12: Shortcomings of activities for the f-word
	Folie 13: My solution
	Folie 14: Allocating behavior to structure
	Folie 15: The functional architecture
	Folie 16: Combining function providers
	Folie 17: Specifying function providers
	Folie 18: Specializing function providers
	Folie 19: My definition for the f-word
	Folie 20: A real example
	Folie 21: Conclusion

