

MBSE in Pharma

Introducing MBSE for Combination Product development

UNOVARTIS | Reimagining Medicine

Ettore Marzocchi, Oliver Bleisinger Zürich 18Sep2023

XXXXXXXXXX

¥¥LYYLYYY LYYLYYLY YYLYYLYYY LYYLYYLYY

イメイイイイイイ

Agenda

- 1. Our products
- 2. Our challenges
- 3. MBSE as key enabler

4. MBSE journey

Our products What do we do?

Our products What is a Combination Product?

Our challenges Development model

Our challenges Documentation

Our challenges Documentation

Our challenges

- Requirements elicitation
- Requirements management
- System thinking (anticipating solutions)
- Traceability
- Impact analysis
- Communication internally
- Communication externally (storytelling)

MBSE as key enabler Introducing architecture modelling

MBSE as key enabler

Document Based	Model Based Systems Engineering
Information in documents → manual alignment (limited)	Information in models \rightarrow easier alignment ("connecting the dots")
Information mainly as text \rightarrow content not easily accessible	Models with Diagrams \rightarrow better common understanding
Content copied from previous projects → reinforcing status quo	Content creation with method/tools \rightarrow focus on content (new/reused)
Manual checks for completeness & consistency → effort & errors	Automated checks for completeness & consistency \rightarrow speed & quality
Impact of change unclear → risk of bad surprises	Impact of change transparent $ ightarrow$ good change decision basis
LCM: all aspects listed above \rightarrow change = effort + risk \rightarrow avoided	LCM: all aspects listed above \rightarrow change is welcome \rightarrow innovation

MBSE Use Case Scoping

Best Practices Approaches in Industry

development

System specification, visualization & communication

Interface specification

System V&V test development

Variability modelling

Consistency-, impact-& coverage analyses

Safety and security analyses

Parametric constraint modelling & analyses

Dynamic behavior Modeling

MBSE Use Cases at NOVARTIS

Focus on RE/RM, System Specification, Visualization & Communication, Impact Analysis

High Priority MBSE Use Cases at NOVARTIS

MBSE Use Cases Tackling NOVARTIS Challenges

Architecture model Business model Business requirements Usage model Stakeholder Design validation requirements Functional model System Desian verification requirements System Design design outputs

- Stakeholder and Use Case Analysis for combination products (360° view)
- Requirements Elicitation and Engineering (using Polarion)
- Requirements Management and R-F-Lapproach (connecting Polarion & Cameo)
- ightarrow Benefits for NOVARTIS Challenges
 - More defined accountability for stakeholders
 - Better exploration of problem domain
 - Traceability across tools (Polarion & Cameo)

engineering

System specification, visualization & communication

- Introducing **Systems Thinking** as a mindset and foundation for MBSE (using CAMEO)
- **System Architecture Design** based on MBSE method using SysML (e.g. Magic Grid)
- **Easy-to-understand MBSE diagrams** (including icons) for visualization/communication)
- → Benefits for NOVARTIS Challenges
 - Increase space for innovative solutions
 - Clear organization of system and subsystem levels
 - Visual presentation of data in systems development

M engineering

High Priority MBSE Use Cases at NOVARTIS

MBSE Use Cases Tackling NOVARTIS Challenges

Consistency-, impact-& coverage analyses

- **Traceability and Impact Analysis** for visualization of dependencies and what-if-queries
- **Coverage analysis** in order to check fulfillment of requirements, functions, etc.
- Supporting **trade-off studies** and **design decisions**)
- → Benefits for NOVARTIS Challenges
 - Introduce functional analysis
 - Improved trace from requirements to V&V
 - Model centric access to data (across document layers)

Novartis MBSE Journey and Pilot Project Approach

Content engineering methods AG

We deliver the digital future of engineering.

Thank you for your attention!

Contact Details presenter Novartis AG

Ettore Marzocchi, PhD Senior Expert Engineering ettore.marzocchi@novartis.com

Contact Details presenter :em engineering methods AG

Oliver Bleisinger Team Leader Model-Based Systems Engineering oliver.bleisinger@em.ag