
SW
IS

SE
D

23
 2

02
30

91
8

Lessons Learned from 24 Years in Systems Engineering © Bernd@GRAHLMANN.net1

Lessons Learned from 24 Years in Systems Engineering
Requirements Breakdown Structures, Traceability Schemas, Attributes

Standardization, Version/Variant Management, …

Dr. Bernd GRAHLMANN
Bernd@Grahlmann.net

www.grahlmann.net

Copyright © 2023 by Dr. Bernd GRAHLMANN.
Published and used by the SSSE and INCOSE with permission.

SW
IS

SE
D

23
 2

02
30

91
8

Lessons Learned from 24 Years in Systems Engineering © Bernd@GRAHLMANN.net2

Agenda
1. Bio highlights;
2. Goals of the Presentation;
3. Requirements Breakdown Structures (RBS);
4. Traceability Schemas;
5. Attributes Standardization;
6. Version/Variant Management;
7. Questions & Answers (Q&A).

SW
IS

SE
D

23
 2

02
30

91
8

Lessons Learned from 24 Years in Systems Engineering © Bernd@GRAHLMANN.net3

Dr. Bernd GRAHLMANN – Bio Highlights / Background …

1. Computer Science & Medicine background (Software for automatic diagnostic of the human hip based
on 3D computed tomography data + tools for operation simulation);

2. Project Director – Tool for modelling, simulation and verification of parallel systems (30 programmers,
500.000 lines of code, distributed worldwide, SUSE Linux …);

3. 3 years Global Manager DOORS & Requirements Management GE Medical (2000+ engineers, process,
guidelines, client/server installations, training, support, templates, project setup and migrations,
coaching, evangelist, …);

4. 20+ years in various industries (such as medical devices, railway, automotive, space, aviation,
aerospace, defense, energy, banking, pharma, semiconductors, software, elevators, building, gaming,
...) successfully setting up requirements engineering / management / development (incl. interfaces
with verification & validation, change and configuration management, risk, (functional) safety
assurance, ...) and, in particular, IBM Rational DOORS (ex QSS DOORS and then Telelogic DOORS) /
IBM Rational DOORS Next Generation (DNG), Siemens Polarion, Visure Requirements ALM, … for
a good number of companies worldwide; training and coaching thousands of engineers for hundreds of
up-to multi-billion USD/EUR/CHF projects.

SW
IS

SE
D

23
 2

02
30

91
8

Lessons Learned from 24 Years in Systems Engineering © Bernd@GRAHLMANN.net4

Goals of the Presentation
 Pass on the quintessence of lessons learned from 24 years in systems engineering;
 Raise awareness and interest of huge leverage potential for success of:
1. Requirements Breakdown Structures (RBS);
2. Traceability Schemas;
3. Attributes Standardization;
4. Version/Variant Management;
 Provide top-level directions on how to succeed;
 Provide mainly tool independent, but also some tool specific examples of artifacts which:
1. have proven to be beneficial;
2. have sufficient ‘meat’ to let you start a long, long, long … thinking journey with kick-starts towards success.

 PLEASE, don’t even think about trying to read the slides now –
just listen and follow … !!!

SW
IS

SE
D

23
 2

02
30

91
8

Lessons Learned from 24 Years in Systems Engineering © Bernd@GRAHLMANN.net5

Requirements Breakdown Structure (RBS) [I]

No matter what (systems of) systems you want to come up with, the ‚Requirements Breakdown Structure‘
(RBS) is THE core.
1. Start with the ‚System Decomposition(s)‘ of your (systems of) systems - I thought that I had been

clear = PLEASE, don’t try to read the slides now – just listen and follow … (e.g., medical device, train,
locomotive, aircraft, satellite, elevator, vehicle, power plant, ship, submarine, nuclear fusion reactor,
ground control, flight inspection system, airborne surveillance system, defense system, cellular product
package, GNSS receiver IC, TV, broadcast reception device customer support package, car
entertainment system, smart card controller platform, eID, connected truck system, automotive supply, 3D
video game, slot-machine, banking software, laboratory management system, fire protection system, …);

2. Sub-divide complex (upper level) scopes into:
a) ‚Non-Functional Areas‘ (such as, ‚RAM – Truck level‘, ‚Acoustics and Vibrations – Car level‘, …),
b) ‚Functional Areas‘ (such as ‚Manage Train Modes – Train level‘, ‚Device Management Functions – Cellular Module

level‘, …),
c) (and potentially) Zones, Layout, and Design Guidelines;

3. Potentially add various ‘Integrations’;
4. Extend with ‚Management Areas‘ (such as ‚Certification‘, ‚Documentation and Training‘, …).

SW
IS

SE
D

23
 2

02
30

91
8

Lessons Learned from 24 Years in Systems Engineering © Bernd@GRAHLMANN.net6

Requirements Breakdown Structure (RBS) [II]

Using the hierarchical structure of the RBS and the ‚Scopes‘ of the RBS consistently during all disciplines
of systems engineering for all specifications is ‚key‘ to success:
1. Write Technical Requirements Specifications (TRS) for those scopes;
2. Do Architectures (ARCH) for those scopes and inline with the hierarchical structure of the RBS;
3. Write Verification & Validation Specifications (VnV-SPEC) for those scopes (taking those scopes as ‚Test

Objects‘);
4. Base the configuration management plan on the hierarchical structure of the RBS;
5. Base the breakdown into work packages on the hierarchical structure of the RBS;
6. …

SW
IS

SE
D

23
 2

02
30

91
8

Lessons Learned from 24 Years in Systems Engineering © Bernd@GRAHLMANN.net7

Traceability Schema (Pattern) [I]

Make the ‚Traceability Schema‘ the second ‚corner stone‘ of the overall approach!
Base it on a ‘Traceability Schema Pattern’ which shows which types of specifications are done and what
traceability is established between them.
Distinguish types of specifications:
1. External, such as:
a) (Original) Customer Requirements Specification (OCRS);
b) (Original) Standards and Regulations (OSTD);

2. Internal, such as:
a) Customer Requirements Specification (CRS) giving parts of various OCRSs allocated to a scope of the RBS and

annotated with internal ‘interpretations’ …;
b) Standards and Regulations (STD) giving parts of various OSTDs allocated to a scope of the RBS and annotated with

internal ‘interpretations’ …;
c) Feature List (FL) giving top-level features on a typically upper-level scope of the RBS;
d) Use Cases (UC) giving (goals of) use cases on a typically upper-level scope of the RBS;
e) Technical Requirements Specification (TRS) giving black-box requirements on a scope of the RBS;
f) Architecture (ARCH) giving hierarchical decomposition of a scope (explaining the main contributions of, and

interactions between its sub-scopes);
g) Verification & Validation Specification (VnV-SPEC) giving V&V Cases taking a scope of the RBS as test object

(covering the TRS requirements).

SW
IS

SE
D

23
 2

02
30

91
8

Lessons Learned from 24 Years in Systems Engineering © Bernd@GRAHLMANN.net8

Traceability Schema (Pattern) [II]

...

Sub-System
C.TRS

20230629a
© bernd@grahlmann.netRBS.-.ProjectX

FAR-27.OSTD

internalexternal

RBS: Requirements Breakdown Structure
FL: Feature List
OCRS: Original Customer Requirements Specification
CRS: Customer Requirements Specification
OSTD: Original Standards & Regulations
STD: Standards & Regulations
TRS: Technical Requirements Specification
ARCH: Architecture
V&V Spec: Validation & Verification Specification

Sub-System
C.Architecture

...

CS-27.OSTD

Customer1.
OCRS

Component n.TRS

Component m.TRS

...

System1.CRS
System1.TRS

System1.ARCH

Sub-System
A.TRS

Overall.
Feature List

System1.STD

Sub-System
B.TRS

System1.
V&V Spec

...

Component
n.V&V Spec

Component
m.V&V Spec

Sub-System
C.V&V Spectests

SW
IS

SE
D

23
 2

02
30

91
8

Lessons Learned from 24 Years in Systems Engineering © Bernd@GRAHLMANN.net9

Traceability Schema (Pattern) [III]

Note that (importance of) Requirements Breakdown Structure and Traceability Schema (Pattern) are
tool independent!
In IBM Rational DOORS you may:
1. use an RBS module to give the RBS and the traceability schema;
2. find a suitable DOORS project/folder hierarchy with DOORS folders for scopes;
3. use DOORS Formal Modules for specifications (such as OCRS, OSTD, FL, TRS, ARCH, VnV-SPEC, …);

Depending on your tool implementation, you want to give (also) tool specific guidance for the different
systems engineering process steps, e.g.:
• Step 3:
o System level DOORS TRS module (potentially multiple for different functional and non functional areas):
 (potentially) Automatically pre-filled (and linked) with CRS and STD requirements
 Re-organized into XYZ chapter structure
 Requirements adapted/re-written for XYZ purposes …
 Missing requirements added, duplications ‚removed’ ... and consolidated
 Target Sub-Systems on next lower level (multiple) selected

It is often opportune to give more detailed, lower-level traceability schemas (zooming in from the
specification level to the object level – i.e., showing traceability, e.g., from V&V Cases to
Requirements) focusing on different aspects (such as handling of standards and regulations,
customer requirements, architecture, V&V, hazards, …) directly in a tool specific way.

SW
IS

SE
D

23
 2

02
30

91
8

Lessons Learned from 24 Years in Systems Engineering © Bernd@GRAHLMANN.net10

Attributes Standardization [I]

Standardizing the attributes (and their types) is the ‘sine qua non’ on the way to efficiency, re-use,
error/problem minimization, …
For the different types of objects in the different types of specifications, you want to standardize which
properties / characteristics / … you manage and which values (and potentially transitions) you allow.
Carefully considering potentials of inheritance from more generic to more specific types of objects (e.g., from
a general requirement to a technical requirement on component level) gives you additional advantages.
Examples of attributes (i.e. properties / characteristics / … to be managed) are:
1. Object Type
2. Applicability
3. Priority
4. Risk Level
5. Comment
6. Qualification Level
7. V&V Measures
8. Satisfaction Argument
9. Rationales
10. Architecture Decomposition
11. V&V Prerequisite
12. V&V Action

SW
IS

SE
D

23
 2

02
30

91
8

Lessons Learned from 24 Years in Systems Engineering © Bernd@GRAHLMANN.net11

Attributes Standardization [II]

Specify and thus document the attributes (and their types).
Include information about naming, applicable level(s), applicable types of specifications, purpose, usage, …
Best case, implement a way to setup and administer the attributes (and their types) automatically in the
tooling from that specification.

Here is an example of how attributes and types can be specified and thus documented in / for IBM Rational
DOORS:

ID
Doors Attribute

Name
Module /

Object Level?

Defintion /
Variant
specific?

Applicable
Module
Types

Presence of
value

Presence Of
Attribute

(c) bernd@grahlmann.net ‐
iDARM Attributes & Types

Documentation Attribute Purpose Type Details Attribute Usage
DOORS Attribute

Type Name
Attributes
.DOC‐13

2 DOORS Attributes

Attributes
.DOC‐205

2.2 Attributes for
Requirements Specifications

Attributes
.DOC‐446

2.2.3.2 'Qualification' related
Attributes

Attributes
.DOC‐237

a_<VariantName>_
QualificationLevel

Object Var OSTD
OCRS
OINT
TRS

Only when
applicable
TRS‐Mandatory
xRS‐Mandatory

TRS‐Mandatory
xRS‐Mandatory

Qualification Level Specifies for a variant
whether sufficient
V&V activities (in
particular, test cases) ‐
to test the realisation
of the requirement on
this scope ‐ have been
written and linked to
the requirement.

[Enumeration]:
TBD
N/A
Not Qualified
Partially Qualified
Qualified

Note, that 'Qualification' is meant as being more general and covering
Validation and Verification and Testing … no matter which definition
one uses (note that hardware guys often define verification/validation
differently from software, ... guys).
In 'Qualification Level' one important status of requirements is tracked ‐
whether there are sufficient V&V activities (in particular, test cases) ‐
to test the realisation of the requirement on this scope ‐ have been
written and linked to the requirement (such that 'passing' those V&V
activities implies that the requirement has been sufficiently validated
and verified).
...

aType_Qualificat
ionLevels

SW
IS

SE
D

23
 2

02
30

91
8

Lessons Learned from 24 Years in Systems Engineering © Bernd@GRAHLMANN.net12

Attributes Standardization [III]

Specify and visualize expectations wrt. evolvement of attributes over time by mapping to phases and
gates/milestones of your systems engineering process. Here is an example of how this can be done:

Attributes in a Feature List

Object Text

Object Type

Rationales

Company Priority

Applicability

Comments

Detailed Argument
Mandatory
Recommended

Text Style:

Frame Style: Filled out for all Features

Filled out only where applicable
Background
color: Definition Attribute

Variant Attribute

Detailed Level

Feature Name

Safety Level

Priority Rationales

Risk Level

Risk Description

Risk Mitigation Status

Prepare
Capture

Allocate
Develop Top-Level

Architecture
Develop Sub-System

V&Vtime

Fe
at

ur
es

 (t
ex

t)
+

Ap
pl

ic
ab

ilit
y

Sa
fe

ty
 L

ev
el

 +
 R

is
ks

D
et

ai
le

d

V&
V

co
m

pl
et

ed

20230629a
© bernd@grahlmann.net

Pr
io

rit
ie

s

Customer Priority

SW
IS

SE
D

23
 2

02
30

91
8

Lessons Learned from 24 Years in Systems Engineering © Bernd@GRAHLMANN.net13

Version/Variant Management [I]
No matter what (systems of) systems you develop, most often your challenge to do the systems
engineering in an efficient, effective, … way becomes extremely more complex, complicated,
… because you actually want to develop multiple versions/variants.
In addition to the usual challenge to properly manage changes and configurations of all your
specifications (with all their requirements, architecture elements, V&V cases, V&V steps, …) one or
even more dimensions are added if versions/variants of your systems of systems, systems, sub-
systems, components, … require proper distinct management.
Different versions/variants imply that you need to manage (at least) certain properties /
characteristics / … of all your requirements, architecture elements, V&V cases, V&V steps, …
per version/variant.
Typical examples of such version/variant specific attributes are:

1. Applicability
2. Customer Priority
3. Risk Level
4. Qualification Level
5. V&V Measures
6. Realization Level

:

SW
IS

SE
D

23
 2

02
30

91
8

Lessons Learned from 24 Years in Systems Engineering © Bernd@GRAHLMANN.net14

Version/Variant Management [II]

Manage the main ‘status’ of a feature, requirement, architecture element, V&V case,
V&V step, … via applicability per variant / version:

►Applicability (per product version/variant)
(whether or not the requirement or feature or
architecture element or V&V case or … is
applicable for the product version/variant)
e.g., [{Not Applicable, Not Applicable?,
Draft, Ready for Review, Approved}]

Typical ‚work-flows‘ are:
1. Draft -> Ready for Review -> Approved;
2. Draft -> Not Applicable? -> Not Applicable

S0: Draft

S-9: Not
Applicable

S9:
Approved

S5: Ready
for Review

S-3: Not
Applicable?

T: 5<->9

T: 0<->-3

T: -9<->-3

T: -3<->5

T: 0<->5

T: 5->-9

T: -9<->9
CR

T: 9->-5
CR

(simplified)
Applicability

Owner
Owner or Proposer
Approver20230629a

© bernd@grahlmann.net

Empty
T:->0

T: -9->0
CR

SW
IS

SE
D

23
 2

02
30

91
8

Lessons Learned from 24 Years in Systems Engineering © Bernd@GRAHLMANN.net15

Version/Variant Management [III]
Focus on version/variant management from the real beginning, don’t postpone this - thinking
that you can simply add this later.
Make sure that your solution covers all phases and disciplines of your systems engineering process
and all specifications (with all their types of objects – i.e., features, requirements, architecture
elements, V&V cases, …).
Ensure a powerful basis for efficient re-usability of features, requirements, architecture elements,
V&V cases, … (AND their traceability!) across projects and product families (avoiding duplications,
… as far as possible).
Cover, in particular:

1. Version/variant specific traceability (visualization);
2. Version/variant specific document generation;
3. Version/variant specific filtering;
4. Version/variant specific comparison;
5. ‘Frozen version’ creation incl. all version/variant specific ‘information’;
6. Error-proneness;
7. Performance.

SW
IS

SE
D

23
 2

02
30

91
8

Lessons Learned from 24 Years in Systems Engineering © Bernd@GRAHLMANN.net16

Version/Variant Management - SSSE/INCOSE - Selected Event [IV]
If you want to hear more about efficient and effective versions/variants management and re-use …,
an SSSE/INCOSE - Selected Event is planned on Tuesday October 31st, 2023 evening in Zürich:

• Efficient and Effective Versions/Variants Management and Re-Use:
Starting ‘properly’ with Requirements and Goals

SW
IS

SE
D

23
 2

02
30

91
8

Lessons Learned from 24 Years in Systems Engineering © Bernd@GRAHLMANN.net17

Questions & Answers

Contact me via email: Bernd@Grahlmann.net or phone +41 792967651

or check via https://www.grahlmann.net/doors_requirements_management_training_overview.htm
or LinkedIn: https://www.linkedin.com/in/grahlmanndoorstelelogic/
or Xing: https://www.xing.com/profile/Bernd_Grahlmann/

or join ‚my‘ LinkedIn groups:
• ‚Requirements Engineering Tools‘ https://www.linkedin.com/groups/12821233/
• ‚IBM Rational DOORS and DOORS Next Generation - DNG (ex Telelogic DOORS) User Group’

https://www.linkedin.com/groups/769057/
• ‚Siemens Polarion‘ https://www.linkedin.com/groups/12004818/

Thanks a lot

