<) MathWorks’

Using Simulatable Requirements Models to improve
Team Collaboration

Stephan van Beek
EMEA Principal Application Engineer

© 2023 The MathWorks, Inc. Published and used by the SSSE and INCOSE with permission.

4\ MathWorks

What is Systems Engineering?

INCOSE defines Systems Engineering as:

11
Systems Engineering is a transdisciplinary and integrative approach to

enable the successful realization, use, and retirement of engineered systems,
using systems principles and concepts, and scientific, technological, and
management methods.

INCOSE: What is Systems Engineering?
INCOSE: Systems Engineering Glossary

https://www.incose.org/about-systems-engineering
https://www.incose.org/about-systems-engineering/system-and-se-definition/se-glossary

4\ MathWorks

What is Model-Based Systems Engineering?

INCOSE defines MBSE as:

: Model-based systems engineering (MBSE) is the formalized application of

modeling to support system requirements, design, analysis, verification anc
validation activities beginning in the conceptual design phase and continuing

throughout development and later life cycle phases.

INCOSE Model Based Systems Engineering (MBSE) Initiative
Sanford Friedenthal, Regina Griego, Mark Sampson

https://www.incose.org/incose-member-resources/working-groups/transformational/mbse-initiative

| 4\ MathWorks

Verification and Validation from a Systems Engineering viewpoint

Coneept Preliminary Do ntegrationana Reexseor — \alidation: stakeholders perspective on a product.

Design Phase Production
Test Phase
| I | | Phase

Validation is the process by which engineers ensure that
the system will meet stakeholder needs and requirements.

1 | Validation

Requirements

Analysis and
architecture

I |
|
! Verification
Design 9
|

Verification: engineers perspective on a product.

Provides information and evidence that the transformation
was made according to the selected and appropriate
methods, techniques, standards, or rules.

Model-Based System Engineering also involves
both verification and validation activities on the
requirements models.

| Coding, prototyping
| |and engineering model | |

https://sebokwiki.org/wiki/System Verification
https://sebokwiki.org/wiki/System Validation

https://sebokwiki.org/wiki/System_Verification
https://sebokwiki.org/wiki/System_Validation

4\ MathWorks

Transform Stakeholder Needs into System Requirements

Requirements Stakeholder
flow ~ needs

System
Requirements

Stakeholders Requirements

Engineer

Systems
Engineer

2

Architecture models
(descriptive)
Requirements set
(textual)

Produced
artifacts

Requirements set
(textual)

Detailed
Requirem ents

Test
Engineers

Software
Engineers

Requirements set
(textual)
Design models
Code (C/C++/HDL)
Test harnesses

Design - MBD @

Tools Architecture - MBSE
used

Requirements - DOORS, DOORS NG, Polarion, ReqlF

4\ MathWorks

Transform Stakeholder Needs into Simulatable System Requirements

Detailed
Requirem ents

Requirements Stakeholder
flow ~ needs

System
Requirements

Stakeholders

12 2®

Requirements Systems Software Test
Engineer Engineer Engineers Engineers
Produced Requirements set Architecture models Requirements models
artifacts (textual) Requirements models Design models
Test harnesses Code (C/C++/HDL)

Test harnesses

Design - MBD @

Tools Architecture - MBSE (System Composer) @

used

Requirements - DOORS, DOORS NG, Polarion, ReqlF

& MathWorks

Case Study: Machine Cooling System, stakeholder needs

Provide a system which maintains the operating
temperature of a machine, avoiding damage to
the machine because of overheating.

[constraint] Cooling system needs to maintain operating
temperature below 40 degrees.

[constraint] Cooling needs to be effective within a
predetermined time.

[assumption] Environmental temperature greater than
-10 degrees and smaller than 80 degrees.

| 4\ MathWorks

Validate and Understand Use-Case Behaviors
By means of descriptive models

Sense_temperature‘ Determine_coolin. "x;_l'u ‘ Normal_operation ‘ ‘ Cooling_needed ‘ ‘Cooling_not_effective

Loop

Alt
Link requirem ents to [Determine_cooling_action/T < 40 |
facilitate traceability

Describe complex
scenarios using

rising(Turn_off_cooling-1)i

:
Tum_off_rooling : ’E Tum_off_cooling
1 1
1
1

Sequence Diagrams

[Determine_cooling_action/T >= 40]

rising(Turn_c;n_cooIi ng-1)

i, 4 S P PR A .

Turn_on_fooling Turn_on_cooling

Opt
[Cooling_not_effective/delay == 30]

S]

rising(Turm_off_machine-1

Turn_off_jmarchine Tum | dff| machine

Requirement Links

= = Describes:
STAKEHOLDER-03 Operating Temp

FERNEY (PN, . /S U N |

4\ MathWorks

Validate and Understand Use-Case Behaviors
By means of simulatable descriptions

Visualize simulation results

')) o |
Determine_coolin... *o

} Sequence Viewer - Use_casel_ibd

‘ Cooling_needed HCooIing_not_effective

Sense_temperature @ ‘ ‘ Normal_operation

1 Use_casel_ibd »

Turn_off_machine

1 1

E E [Determine cooling

1 1

E E ; g

H H : CoolingOff CoolingOn MachineOff

H H ! Turn_on_cooling

Loop |! ! | s - : -

! : 0 I ~ 1 1 I

| ' = — : |

[[] — I -~ 1 I

H H - o 1 — = 1

1 1 1 ﬂe U o 1

: : 354 i —atterflses i Turn_off_cooling
Alt | i i | |

1 1 H H

I

[Determine_cooling_action/T <40]

w o . eluEe |V a@ |, as
9 rising(Turn_off_cooling-1)

¥ Tum_off_coaling
1

Tum_off_fooling

[Determine_cooling_action/T >= 40]

] rising(Turn_on_cooling-1) H

Turn_on_fooling

P Turn_on_cooling

ive

Opt
[Cooling_not_effective/delay >= 30]

rising(Turm_off_machine-1

@
@ |
o
=
=

qff| machine

LT S AT

Cooling

Turn_off_cooling = true;
Turn_on_cooling = false;
Turn_off_machine = false;
delay = 0;

CoolingOn MachineOff
Turn_off_cooli_ng = false; after(30,sec)[T>=40] Turn_off_cool?ng = false;
Turn_on_cooling = true; 1 Turn_on_cooling = false;
Turn_off_machine = false; Turn_off_machine = true;
delay = 0; delay = 30;

[T<40] 9

Verify expected behavior
through simulation

| 4\ MathWorks:

Validate and Understand Use-Case Behaviors
By means of formal descriptions

| T — T

h 4

| Tum_off_machine =

Formal description of [Tum_on_coolng =
I’eCIUII'em ents | Tum_off_cooling

Turn_off_machine

Turn_on_cooling A i B

Turn_off_cooling

A 4

Precondition Postcondition

Index Summary T prev(Turn_off_machine) PYration rrn ot cooling Turn_on_cooling Tumn_off machine
1 Cooling off when T<40 <40 false true false false
“2 Temperature is T >= 40 >40 false
2.1 Machine off cooling duration >=30 sec >40 30 false false true
2.2 ; Cooling on cooling done within 30 sec Else false true false
3 When machine is off, it should stay off true false false true

Input condition to activate a Expected outcome of a requirement
requirement

10

Verify and Understand Use-Case Behaviors

By means of formal descriptions

Precondition

= Index Summary
1 Cooling off when T<40 <40 =
“«2 Temperature is T >= 40 =40
21 Machine off cooling duration >=30 sec
22 . Cooling on cooling done within 30 sec
3 When machine is off, it should stay off

Formal description

Formal analysis of requirements: completeness

and consistency = T =40 is not specified!

4\ MathWorks

Postcondition

prev(Turn_off_machine) Duration EUI'I'I_Oﬁ_EDDlfﬂEum_ﬂn_ﬂﬂﬂW[Turn_oﬁ_machimﬂﬂ]

falze false

~N

Incompleteness Issues
Incompleteness 1: 'Turn_off_machine' is not specified
at time 0 for the following inputs:

Time|0

Step |1

T |40

Incompleteness 2: 'Turn_on_cooling' is not specified
at time 0 for the following inputs:

Timel0

Step |1

T |40

Incompleteness 3: 'Turn_off_cooling' is not specified
at time 0 for the following inputs:

Timel0

Step |1

T |40

11

Conclusions

= Requirements Models enable Automation for Verification and Validation
— Complete, consistent and validated system requirements =» improved quality

- Collaboration between different teams
— Executable requirements models improve communication between different teams
— Simulation results can be presented from different viewpoints

- What comes next?
— Re-use requirements models in downstream verification and validation activities
— Digital thread enables automation

&\ MathWorks:

12

4\ MathWorks

Re-using Requirements Models to Validate Design Models

Secure compliance to requirements in

the future by unit-testing

int8 >/

Lower limit: -10
Upper limit: 80

Test harness

| T T

A 4

| Turn_off_machine Turn_off_machine

| Tum_on_cooling P Turn_on_cooling

| Tum_off_cooling P Turn_off_cooling

Turn_off_machin\e\ Turn_off_machine 9 Te St d efl n Itl O n
NAME)
Turd_on_codling ~ Results: 2023-Apr-04 10:4%:58 2@
Turn_on_cooling % + [=] validateCooling 20
Tum—Oﬁ—mdifJ + [7] Test cooling behavior ry.)
Determi li i i i
etermine cooling action Tum_off_cooling v [5] Cooling not effective (]
~ [£] Cooling effective (]
ReqTable ~ [zl Verify Statements [
ReqTableOK R:1 (Requirements Table)]
R:2.1 (Requirements Table) @
R:2.2 (Requirements Table)]
R:3 (Requirements Table) @

' = i 3im Output (Simulation : normal)

Requirements Table

Validate compliance to
requirements through simulation

13

| 4\ MathWorks

Follow the Digital Thread from Stakeholder to Detailed Requirements

Traceability enables Automation)
Implementation

model

By . . .
‘o Determine_cooling_action

Implefnents

Stakeholder Stakeholder

=/ ACTOR-01 Operations Engineer

Sequence diagram

as behavior

= STAKEHOLDER-03 Operating Temp

Desdribes

= Tem pControlUnit

Verifies | Cooling not effective

'l_TT Cooling effective

Requirements model
as atest

Inde 1D Summary Implementad Verified
El ¢= Described by:
A |h| StakeholderRequirements .].] ﬁ N Cont TU .
TempControlUni
> E 1 Stakeholders
i i El ¢ Implemented by:
e SR opemgTens IS G semine_cosing_sctr
B 22 STAKEHOLDER-05 Noise Pollution ()) EI Needed by: . .
ITE Performance ()) . AC:'I:OR-EH Operations Engineer
B 4 STAKEHOLDER-15 Mean Repair Cost ()) %Ve"fmd by: °
Cooling_not effective
> B 5 Safety
[I) =3 Cooling effective @ 14

&\ MathWorks

MathWorks Value for Model-Based Systems Engineering

Maintain requirements as an authoritative source of truth throughout
the product development process, by using (simulation) models to:

1.

Transform stakeholder requirements/needs
into design requirements using models, simulation and code generation

Establish traceability
between requirements, architectures, designs and testcases

Explore the design space
through (reusable) trade-off studies

Manage system complexity
through views and traceable architecture models

Connect system architecture
with software architecture and component implementations

15

	Default Section
	Folie 1

	Systems Engineering
	Folie 2: What is Systems Engineering?
	Folie 3: What is Model-Based Systems Engineering?
	Folie 4: Verification and Validation from a Systems Engineering viewpoint
	Folie 5: Transform Stakeholder Needs into System Requirements
	Folie 6: Transform Stakeholder Needs into Simulatable System Requirements
	Folie 7: Case Study: Machine Cooling System, stakeholder needs …..
	Folie 8: Validate and Understand Use-Case Behaviors By means of descriptive models
	Folie 9: Validate and Understand Use-Case Behaviors By means of simulatable descriptions
	Folie 10: Validate and Understand Use-Case Behaviors By means of formal descriptions
	Folie 11: Verify and Understand Use-Case Behaviors By means of formal descriptions
	Folie 12: Conclusions
	Folie 13: Re-using Requirements Models to Validate Design Models
	Folie 14: Follow the Digital Thread from Stakeholder to Detailed Requirements Traceability enables Automation
	Folie 15: MathWorks Value for Model-Based Systems Engineering

