

MBSE in Pharma

XXYXXXXXX

¥¥¥X¥¥¥¥ X¥¥X¥¥X¥¥ Y¥XY¥X¥¥X X¥XX¥XX

YYYYYYYYYY YYYYYYYYY

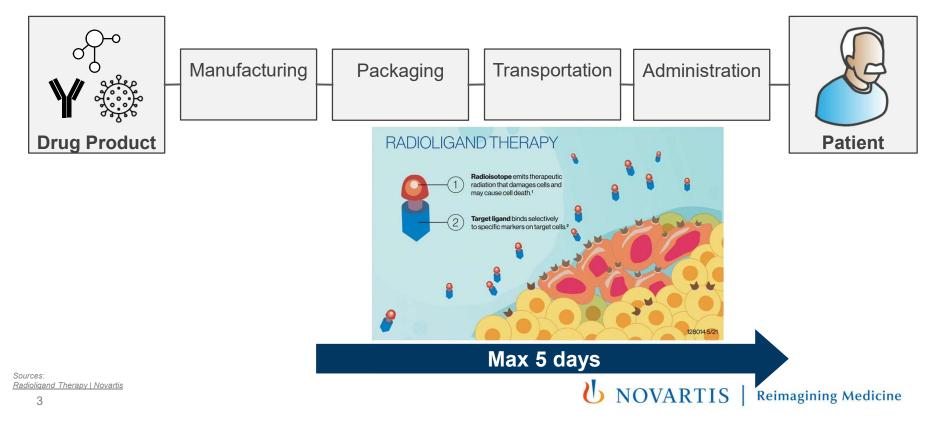
YYXYYXYYY

LYYLYYLYY YYLYYLYYY LYYLYYLYY YYLYYLYYY

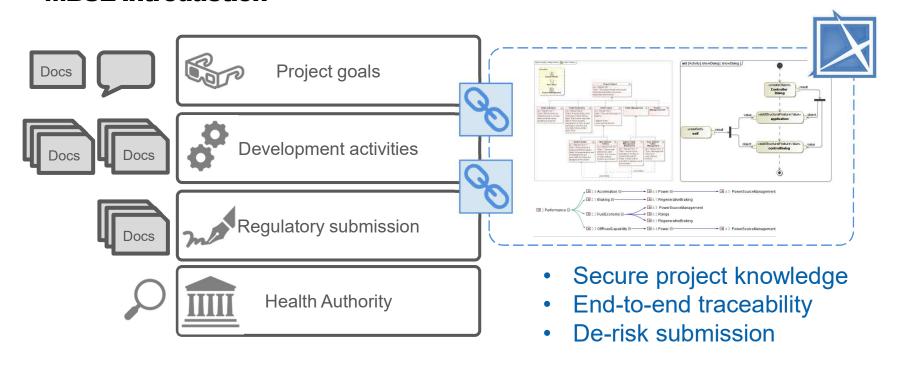
Enhancing Systems Thinking, MBSE and Cross-Team Collaboration in Regulated Industries on example of Novartis

Ettore Marzocchi, Jonas Alles, Dr. Sven Kleiner SwissED, Zürich 09th September 2024

Agenda



- 1. Our products & challenges
- 2. Novartis MBSE methodology
- 3. Stakeholder-specific viewpoints
- 4. Outlook: Sustainable Change & Change Management in MBSE


UNOVARTIS | Reimagining Medicine

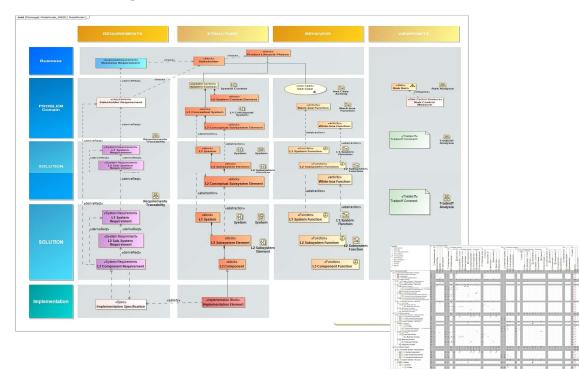
Products and challenges

Radioligand therapy

Products and challenges MBSE introduction

UNOVARTIS | Reimagining Medicine

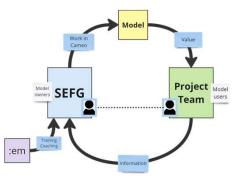
Novartis MBSE Methodology


			Pillar			
			Requirements	Structure	Behavior	Viewpoints
Domain	Problem	Business	Business Requirements	Lifecycle Phases &	Stakeholder Analysis	
		Black Box	Stakeholder Requirements	System Context	Use Cases	Risk Analysis Impact Analysis Tradeoff
		White Box		Conceptual Subsystems	Functional Analysis	
	Solution	L1	System Requirements	System Structure	System Behavior	Solution-
		L2	Subsystem Requirements	Subsystem Structure	Subsystem Behavior	dependent Context
		L3				
	Implementation		Implementation Specification	Implementation Structure		
5					UNOVARTIS Reimagining Medicine	

Novartis MBSE Methodology

Metamodel for a seamless traceability

Enabling:


- Traceability **evaluation** of all model artefacts
- Cross-aspect relationships
- Impact analysis
- Story-telling
- Configuration of Data/Tool-synchronization



U NOVARTIS

Novartis MBSE Methodology Implementation journey

- System Model created
- Model-based creation of requirements for DHF/Regulations
- Story-telling and traceability from Stakeholder to Implementation
- Systems thinking:
 - Problem/Solution domain
 - Use case modelling and requirements derivation
 - Considering complete lifecycle: Product+Packaging+Transportation
- Pilot project evaluation and collaboration

UNOVARTIS |

Reimagining Medicine

Viewpoints are added to the system model for analysis and visualization

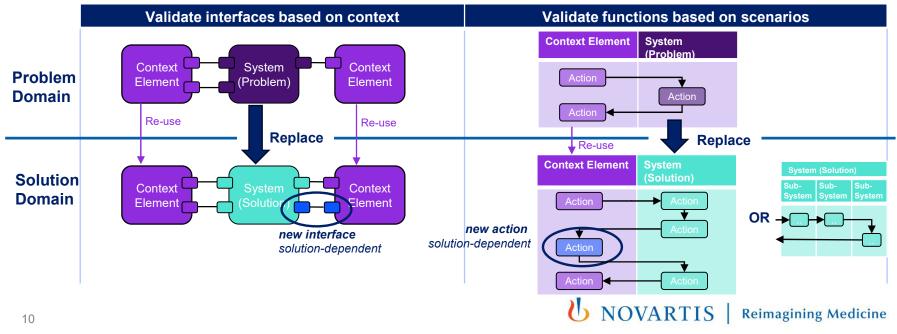
- Existing model elements and traceability are used for investigations
- Required properties of model artefacts has to be ensured or created by stereotyped attributes (e.g. functional requirements classified by "EPR")
- Additional **stereotyped model elements** used to inter-related elements (e.g. risk item, tradoff comment)
- **Export/Exchange** of views for collaboration and documentation

Example: Solution-dependent Context

When to update problem domain and when it is solution-dependent?

Guidance note:

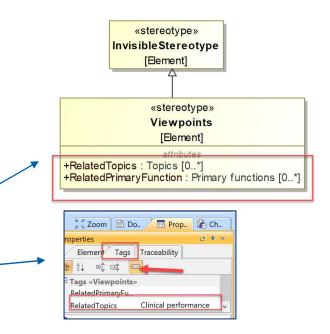
- Update problem domain...
 - ... if an issue can not be influenced by developed solution
 - ...if it is not caused by the selected solution
 - ...if it is required by (new) business or stakeholder requirements
- Update solution domain for any issue that arises with the technical implementation/realization of the selected solution.
- \rightarrow New identified interfaces or functions by solution-dependent context:
 - External elements to be validated and aligned with stakeholders
 - Highlight model elements by legend (problem vs. solution domain)



9

Example: Solution-dependent Context

Goal: designed solution (solution domain) fits to what is required (problem domain) **Approach**: re-use problem domain diagrams and elements for context and scenarios and replace system block with solution domain (including solution interfaces and activities/actions)

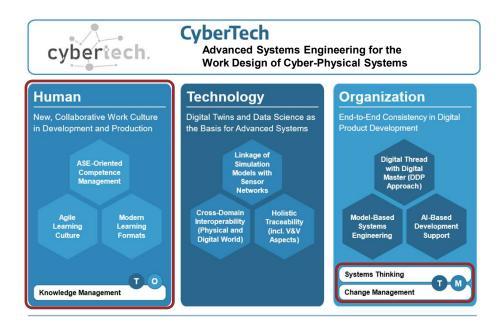

Example: Viewpoint Implementation

Purpose of tags:

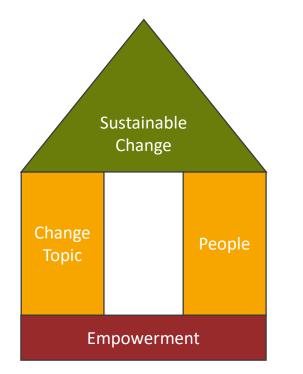
 Tags are used – similar to properties – to indicate the relevance of a tagged model artefact to a specific topic as part of a viewpoint (e.g. like EPRs, clinical performance)

Principle How To:

- Use the **InvisibleStereotype** to add potential tag to any element in the model by predefined enumerations
- Tag relevant model elements
- Register all model elements tagged in smart package and visualize in a diagram if required



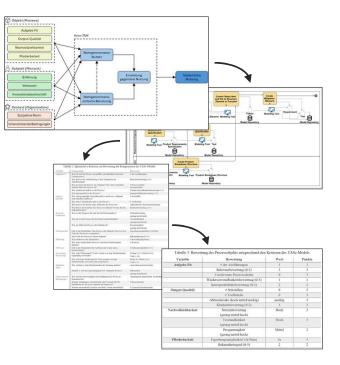
Considering Change Management and people/humans in deployment


- **Deployment** is a major part of the MBSE transformation journey **often neglected**, but crucial for **sustainable change**.
- Collaboration between disciplines and teams is key to address the majority of impacted people and achieve acceptance.
- Current practice in deployment is mostly focused on technology & organization (frameworks, tools, models, ontologies, ...).
- → How can the **gap between practice and science** be bridged to empower individuals?

Picture Source: O. Bleisinger, S. Kleiner, K. Avdejuk, B. Röhm, T. Steinbach, Y. Arslanparcasi, O. Karasek (2024), "Ein Leitbild zu Advanced Systems Engineering für die Arbeitsgestaltung von Cyber-technischen Systemen", Tag des Systems Engineering 2024

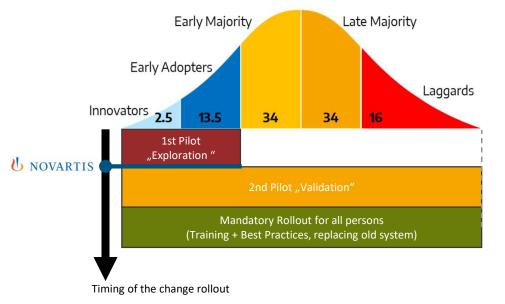
Value of empowerment & people acceptance for SE deployment

- Change in an organization requires next to the actual Change Topic involved **People** that are doing the change.
- People only will sustain the change, if they are enabled by an **empowering environment**. Otherwise, they will not adapt.
 - Empowerment = Enable conversion of intention to action
 - Acceptance = Positive attitude towards technology (intention "I would use...")
 - Active Acceptance = Actual use of technology/tools (action "I will use...")


 \rightarrow Main tasks need to be done:

- **Pilot**/Rollout the presented models, tools, methods
- Understand and scope the targeted audience needs.
- Empower people and create active acceptance for technology.

What about means to achieving active acceptance?


- In practice, active acceptance is often treated as low priority and "done by gut feeling".
- Currently for SE/MBSE there are **ongoing applied research results** and implementations in practice.
- The **TASc-Model** (Technology Acceptance Scoring Model) is a more **objective mean to assess acceptance** before rollout.
 - The model divides the active **acceptance scoring in three regions** evaluating acceptance from different perspectives.
 - Furthermore, a **procedure is defined for acceptance scoring** and some perspectives can be evaluated without considering people.
 - For other regions involvement of change impacted people is key.

Source: J. Heinrich, O. Bleisinger, K. Avdejuk, M. Hohmann (2024), "Das Technology Acceptance Scoring Model (TASc-Model) für die Einführung von Model-Based Systems Engineering", Tag des Systems Engineering 2024

MBSE Journey @Novartis – it's not done after one pilot project!

Multiple phases are needed for a sustainable rollout

Exploration:

- Understand, how new system replaces old system
- Define "way of work" with the new system

Validation:

- Gain practical knowledge about what works in daily business and what needs optimization
- Possible re-evaluation of previously defined practices, even major changes

Rollout:

- Mandatory rollout for persons impacted by the change
- All enablement material must be available
- No major changes in methodology allowed in early stage

Enhancing Systems Thinking, MBSE and Cross-Team Collaboration | SWISSED 2024

Thank you

Contact details presenter Novartis AG

Ettore Marzocchi, PhD

Senior Expert Engineering

ettore.marzocchi@novartis.com

Contact details presenter :em engineering methods AG

Jonas Alles

Senior Consultant Model-Based Systems Engineering

jonas.alles@em.ag

CONTRACTOR STATES BASE NOVARTIS Reimagining Medicine