

BRIDGING GAPS WITH UAF

Transformative Use Cases and Success Stories

Edita Milevičienė

INTRODUCTION

Enterprise systems engineering (ESE) is the application of systems engineering principles, concepts, and methods to the planning, design, improvement, and operation of an enterprise.

- INCOSE Systems Engineering Handbook, 2023

Enterprise - a purposeful or industrious undertaking (especially one that requires effort or boldness)

-Enterprise is a strategic term in this case not meaning organization.

Model Based Enterprise Systems Engineering (MBESE) Is a transformative approach to designing, maintaining, and evolving enterprises by creating and using digital models to represent various aspects of the organization.

- It includes developing models of business processes, services, products, and systems that make up the enterprise, as well as the individuals and organizations involved in these processes.

ENTERPRISE VS. SYSTEM ARCHITECTURE

System Architecture is Like Blueprints for a Building

Outputs for a System tend to be the same over its lifetime. Results for a system are more readily predicted.

Enterprise Architecture is More Like Urban Planning

Outcomes for an Enterprise are very complex and are shifting over time. Usually a "sequence" of outcomes is laid out in a roadmap. The Enterprise can even change its own objectives!

THE ENTERPRISE/ SOS ARCHITECTURE IS MORE THAN

JUST THE SOI

- The definition of the Enterprise itself
- Enterprise needs (capabilities)
- CONOPS
- One or more Solution Architectures
- Organizations involved
- Programs that deliver the SOIs

UAF IS A STANDARD...

- To develop architectural descriptions
 - in commercial industries, federal governments and military organizations
- Has many different use cases from Enterprise Systems Engineering (ESE) to SoS,
 Mission and Cyber-Systems engineering, or enabler for Digital Transformation
 planning
- Developed by Object Management Group (OMG) with the leadership from Dassault Systemes and Lockheed Martin
- Is an international ISO standard ISO/IEC 19540:1 and ISO/IEC 19540:2
- Current version of UAF specification is 1.2 https://www.omg.org/spec/UAF/1.2/About-UAF/

UAF Use Cases

15288 System Lifecycle Processes

Acquisition Decision Making

AOA (Analysis of Alternatives)

Application Portfolio Management

Budget Planning

Business and Mission Analysis - INCOSE

Business Process Reengineering

Business Transformation Planning

Capability Gaps Analysis

Capability Planning

Capability Portfolio Management

Capability-based Assessment

Certification Planning

Defense Acquisition System

Define and analyze problem space

Describe SoS **Design Surety**

Digital Engineering Planning and Execution

Digital Transformation Planning

Digital Iwin

Doctrine Development

Ecosystem Sustainability

Enterprise Planning

Enterprise Systems Engineering - INCOSE

Federated Mission Network (FMN)

JCIDS

Logistics Support Planning

Mission Assurance

Mission Criticality Mission Engineering

Operational Analysis

Operational Sustainability

Operations

Operations Planning

Optimization

Organizational and Strategic Planning

Performance Management

Policy Formulation

Portfolio Management

PPBF

Predictive Analytics

Program Assessment and Evaluation

Program Formulation

Program Planning

Requirements Development and Flowdown

Risk and Opportunity Management

Security Analysis

Simulation Support

Strategic Planning and Execution

Sustainability

Sustainment Engineering

System Lifecycle Management

System Security Engineering

System Sustainability

Technology Planning and Assessment

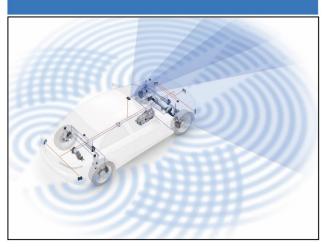
Test Planning and Execution

Training

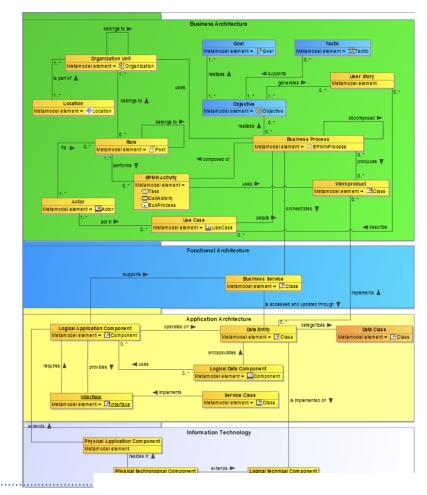
PLM program enables the digital transformation

Organization

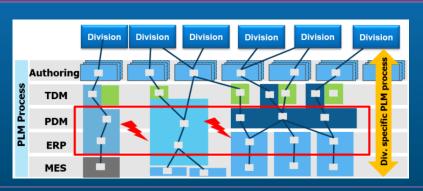
- Strategic Goals
- > Agile Methodology
- Manage Complexity


Processes & Data

- Provide Standard and Harmonized Processes and Data
- Provide Traceability
- Role based user interface


Technology

- > Create Engineering IT standards
- Future-proof IT System Landscape
- > Drive Out of the box usage


ZF Architecture Framework

- Metamodel based on UAF and TOGAF principles
- ► Tailored to fit company needs

Current Situation and Areas for Improvement

From division-specific PLM solutions

... to cross-divisional PLM solutions where needed. Division Division Division Division **Division Division** Authoring CAE Reau. **Project** PLM Process **TDM** Integrated X-BU/Div approach: Windchill incl. SAP-Master **PDM**

ERP...

Localized solutions

Individual processes, Single optimum

No single source of truth

Not optimized Cross divisional collaboration possible

Data and process harmonization X-BU/Div

IT-System optimization

ERP

MES

Basics for one PLM Platform

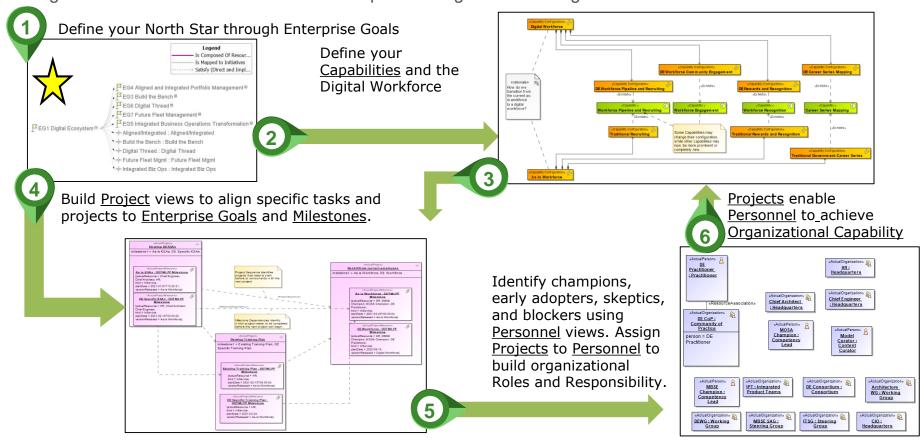
(One part – one number, Consistent Material Master, Corporate development process support, Engineering Change Management, Problem & Risk Management, Configuration Management)

One Platform – Same Process – Same solution

Deloitte.

Going Digital: Using SysML and UAF to Architect a Transformation

Organizations are systems with their own capabilities, structure, and processes; and can be modeled in support of a Digital Transformation.



ROADMAPPING

✓ INTEGRATION

BRIDGING THE GAP

Using the Unified Architecture Framework to plan an Organization's Digital Transformation

UAF Use Cases

15288 System Lifecycle Processes

Acquisition Decision Making

AOA (Analysis of Alternatives)

Application Portfolio Management

Budget Planning

Business and Mission Analysis - INCOSE

Business Process Reengineering

Business Transformation Planning

Capability Gaps Analysis

Capability Planning

Capability Portfolio Management

Capability-based Assessment

Certification Planning

Defense Acquisition System

Define and analyze problem space

Describe SoS

Design Surety

Digital Engineering Planning and Execution

Digital Transformation Planning

Digital Twin

Doctrine Development

Ecosystem Sustainability

Enterprise Planning

Enterprise Systems Engineering - INCOSE

Federated Mission Network (FMN)

JCIDS

Logistics Support Planning

Mission Assurance

IDS .

Mission Criticality

Mission Engineering

Operational Analysis

Operational Sustainability

Operations

Operations Planning

Optimization

Organizational and Strategic Planning

Performance Management

Policy Formulation

Portfolio Management

PPBE

Predictive Analytics

Program Assessment and Evaluation

Program Formulation

Program Planning

Requirements Development and Flowdown

Risk and Opportunity Management

Security Analysis

Simulation Support

Strategic Planning and Execution

Sustainability

Sustainment Engineering

System Lifecycle Management

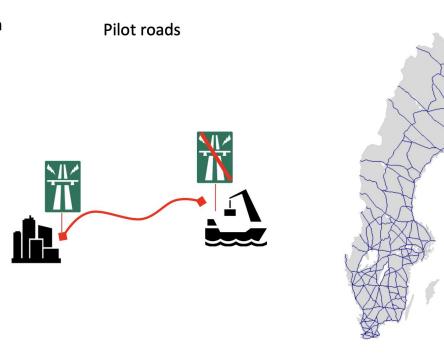
System Security Engineering

System Sustainability

Technology Planning and Assessment

Test Planning and Execution

Training



THE ELECTRIC ROAD PROJECT CAN BE VIEWED AS REQUIRING THREE DISTINCT STAGES

Technology demonstration

Wire

Rail

UAF Use Cases

15288 System Lifecycle Processes

Acquisition Decision Making

AOA (Analysis of Alternatives)

Application Portfolio Management

Budget Planning

Business and Mission Analysis - INCOSE

Business Process Reengineering

Business Transformation Planning

Capability Gaps Analysis

Capability Planning

Capability Portfolio Management

Capability-based Assessment

Certification Planning

Defense Acquisition System

Define and analyze problem space

Describe SoS

Design Surety

Digital Engineering Planning and Execution

Digital Transformation Planning

Digital Twin

Doctrine Development

Ecosystem Sustainability

Enterprise Planning

Enterprise Systems Engineering - INCOSE

Federated Mission Network (FMN)

JCIDS

Logistics Support Planning

Mission Assurance

Operations

Operations Planning

Mission Criticality

Mission Engineering

Operational Analysis

Operational Sustainability

Optimization

Organizational and Strategic Planning

Performance Management

Policy Formulation

Portfolio Management

PPBF

Predictive Analytics

Program Assessment and Evaluation

Program Formulation

Program Planning

Requirements Development and Flowdown

Risk and Opportunity Management

Security Analysis

Simulation Support

Strategic Planning and Execution

Sustainability

Sustainment Engineering

System Lifecycle Management

System Security Engineering

System Sustainability

Technology Planning and Assessment

Test Planning and Execution

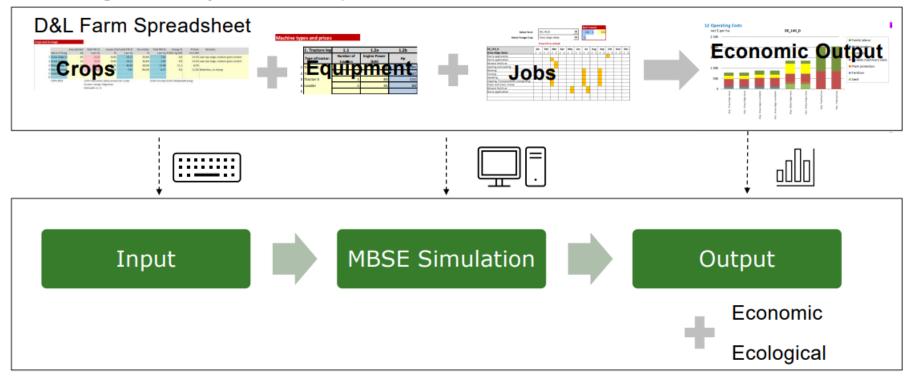
Training

Modeling Architectures in Production System Domain

MBSE in Operations Domain

MBSE Challenges

- Many Customers
- Multiple Production systems
- Many Operation Scenarios
- Multiple Solutions



System Requirements

Modeling Dairy Operational Scenarios

Adding value beyond Basic Spreadsheet

UAF Use Cases

15288 System Lifecycle Processes

Acquisition Decision Making

AOA (Analysis of Alternatives)

Application Portfolio Management

Budget Planning

Business and Mission Analysis - INCOSE

Business Process Reengineering

Business Transformation Planning

Capability Gaps Analysis

Capability Planning

Capability Portfolio Management

Capability-based Assessment

Cortification Planning

Defense Acquisition System

Define and analyze problem space

Describe SoS

Design Surety

Digital Engineering Planning and Execution

Digital Transformation Planning

Digital Twin

Doctrine Development

Ecosystem Sustainability

Enterprise Planning

Enterprise Systems Engineering - INCOSE

Federated Mission Network (FMN)

JCIDS

Logistics Support Planning

Mission Assurance

Mission Criticality
Mission Engineering

Operational Analysis

Operational Sustainability

Operations

Operations Planning

Optimization

Organizational and Strategic Planning

Performance Management

Policy Formulation

Portfolio Management

PPBE

Predictive Analytics

Program Assessment and Evaluation

Program Formulation

Program Planning

Requirements Development and Flowdown

Risk and Opportunity Management

Security Analysis

Simulation Support

Strategic Planning and Execution

Sustainability

Sustainment Engineering

System Lifecycle Management

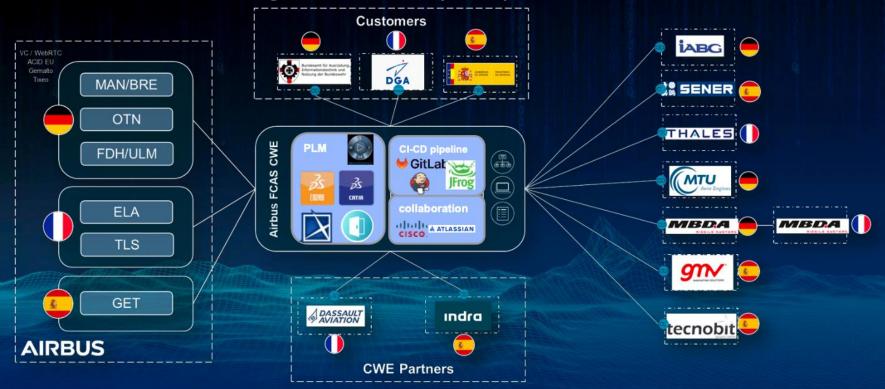
System Security Engineering

System Sustainability

Technology Planning and Assessment

Test Planning and Execution

Training

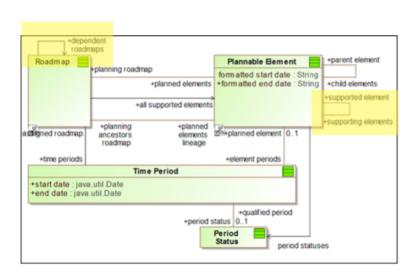


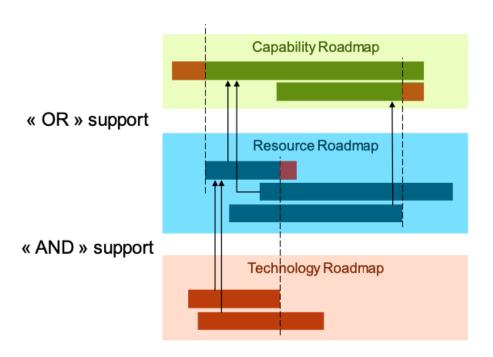
DEFENCE AND SPACE

Lalitha Abhaya, Dr. Dominique Ernadote, Dr. Jörg Wirtz

AIRBUS

3 FCAS Common Working Environment (CWE)




FCAS collaboration between System Development partners based on a military restricted cloud.

DEFENCE AND SPACE [Airbus Amber]

Planning Consistency Check



OMG UNIFIED ACCHITECTURE FRAMEWORK TO	Motivation Mv	Taxonomy Tx	Structure Sr	Connectivity Cn	Processes Pr	States St	Sequences Sq	Information ^c If	Parameters ^d Pm	Constraints Ct	Roadmap Rm	Traceability Tr
Architecture Management ^a Am	Architecture Principles Am-Mv	Architecture Extensions Am-Tx ^e	Architecture Views Am-Sr	Architecture References Am-Cn	Architecture Development Method Am-Pr	Architecture Status Am-St		Dictionary Am-If	Architecture Parameters Am-Pm	Architecture Constraints Am-Ct	Architecture Roadmap Am-Rm	Architecture Traceability Am-Tr
Summary & Overview Sm-Ov												
Strategic St	Strategic Motivation St-Mv	Strategic Taxonomy St-Tx	Strategic Structure St-Sr	Strategic Connectivity St-Cn	Strategic Processes St-Pr	Strategic States St-St		Strategic Information St-If		Strategic Constraints St-Ct	Strategic Deployment, St-Rm-D Strategic Phasing St-Rm-P	Strategic Traceability St-Tr
Operational Op	Requirements Rq-Mv Security Controls Sc-Mv	Operational Taxonomy Op-Tx	Operational Structure Op-Sr	Operational Connectivity Op-Cn	Operational Processes Op-Pr	Operational States Op-St	Operational Sequences Op-Sq		Environment En-Pm-E and Measurements Me-Pm-M	Operational Constraints Op-Ct		Operational Traceability Op-Tr
Services Sv		Services Taxonomy Sv-Tx	Services Structure Sv-Sr	Services Connectivity Sv-Cn	Services Processes Sv-Pr	Services States Sv-St	Services Sequences Sv-Sq	Operational Information Op-If		Services Constraints Sv-Ct	Services Roadmap Sv-Rm	Services Traceability Sv-Tr
Personnel Ps		Personnel Taxonomy Ps-Tx	Personnel Structure Ps-Sr	Personnel Connectivity Ps-Cn	Personnel Processes Ps-Pr	Personnel States Ps-St	Personnel Sequences Ps-Sq	Resources		Competence, Drivers Performance Ps-Ct	Personnel Availabilit Ps-Rm-A Personnel Evolution PS-Rm-E Personnel Forecast Ps-Rm-F	Personnel Traceability Ps-Tr
Resources Rs		Resources Taxonomy Rs-Tx	Resources Structure Rs-Sr	Resources Connectivity Rs-Cn	Resources Processes Rs-Pr	Resources States Rs-St	Resources Sequences Rs-Sq	Information Rs-If	and Risks Rk-Pm-R	Resources Constraints Rs-Ct	Resources evolution Rs-Rm-E Resources forecast Rs-Rm-F	Resources Traceability
Security Sc		Security Taxonomy Sc-Tx	Security Structure Sc-Sr	Security Connectivity Sc-Cn	Security Processes Sc-Pr					Security Constraints Sc-Ct		Security Traceability Sc-Tr
Projects Pj		Projects Taxonomy Pj-Tx	Projects Structure Pj-Sr	Projects Connectivity Pj-Cn	Projects Processes Pj-Pr						Projects Roadmap Pj-Rm	Projects Traceability Pj-Tr
Standards Sd		Standards Taxonomy Sd-Tx	Standards Structure Sd-Sr								Standards Roadma _l Sd-Rm	Standards Traceability Sd-Tr
Actual Resources Ar			Actual Resources Structure, Ar-Sr	Actual Resources Connectivity, Ar-Cn		Simulation ^b				Parametric Execution/ Evaluation ^b		

But isn't this all we need?

Parameters

Can we use just these domains and models?

This Photo by Unknown Author is licensed under CC BY-SA

