

System-on-Chip Meets Systems Engineering

A Simulation-Driven Approach

Stephan van Beek

Consulting Application Engineer MBSE/SoC/FPGA

Christoph Kammer

Senior Application Engineer **DevOps**

The biggest problem was not the unit mismatch itself, but the failure to detect and correct this mistake

1997

2008

2025

FPGAs bigger and better FPGAs

SoC = FPGA + ARM

technology-

logic interfaces

algorithms

advanced algorithms

people

1 engineer

multiple engineers

multidisciplinary team

process

schematic VHDL

Model-Based Design (MBD)

MBD + MBSE??

How do you create your FPGA architectural block diagrams?

Challenges ► complexity How do models and simulation help?

Top-down design processes

- Functional decomposition
- No simulation needed early, but later you will need simulation

Go Beyond Textual Requirements

- Use expressiveness of requirement models and trade studies
- Use views to put stakeholder discussions in context

Validate compliance to requirements through simulation

Deployment

Generate RTL code from architecture + design models

Model-Based Systems Engineering + Model-Based Design

Top-down

Bottom-up

Custom Profiles

LogicalProfile

AXI4_Light_interface

Integrate MBD with MBSE

Requirements: Textual, Traceability, Interfaces, Interactions

Validate Systems by Re-Using Requirements Models

Validate System Behavior and Robustness with Fault Injection

Analyze impact of faults using simulation

Generate HDL code from System Architecture incl Detailed Models

The Road Ahead: SysML v2 and the Future of FPGA/SoC Development

Automation and Interoperability

DevOps Automation to Ensure Consistent Build Processes

Automate Locally or in CI with Buildtool

 MATLAB has a growing list of capabilities that necessitate build tasks, resulting in more ad hoc scripts

 The MATLAB Build Tool is a build system that provides a standard programming interface to create and run tasks in a uniform and efficient way

Continuous Integration, Delivery and Deployment (CD)

What is SysML?

SysML is used for:

- Modeling complex systems
- Visualizing system architecture
- Describing system behavior
- Verifying system requirements

SysMLv2 and Enhanced Interoperability

Interoperability in Action

Where do I start with SysMLv1?

Use the SysML Connector to import your SysMLv1 model into MATLAB

MathWorks Artifacts

Concluding remarks

Architecture

Design

Simulation

The main FPGA challenge lies in architecture, often informal and overlooked. A tool is needed to generate RTL directly from the architecture + design in a single model, making it the single source of truth.

- Adam Taylor, Adiuvo -- well known FPGA/SoC influencer and blogger

Automation

Interoperability

Questions?

More information

