
1
© 2025 The MathWorks, Inc.

System-on-Chip Meets Systems Engineering
A Simulation-Driven Approach

Stephan van Beek

Consulting Application Engineer

MBSE/SoC/FPGA

+ ➔+
Christoph Kammer

Senior Application Engineer

DevOps



2

.

Mars Climate Orbiter
Image credit: NASA/JPL-Caltech



3
Mars Climate Orbiter
Image credit: NASA/JPL

The biggest problem was not 

the unit mismatch itself, 

but the failure to detect and 

correct this mistake



4

Challenges – complexity

1997 ….. 2008 ….. 2025

FPGAs bigger and better FPGAs SoC = FPGA + ARM

logic interfaces algorithms advanced algorithms

1 engineer multiple engineers multidisciplinary team

schematic Model-Based Design (MBD) MBD + MBSE??

people

process

technology

VHDL



5

How do you create your FPGA architectural block diagrams?

0%

10%

20%

30%

40%

50%

60%

Visio Powerpoint System Composer SysML MBSE tool Napkin No tool We don't create an
FPGA/SoC

architecture diagram

Might be 

okay for simple

architectures

Best for 

complex 

architectures

Webinar Oct 29th 2024, An Expert’s Guide to Using MATLAB 

and Simulink for FPGA and SoC Design, 385 attendees

MBSE + MBD



6

Challenges ► complexity

How do models and simulation help?

Top-down design processes
– Functional decomposition

– No simulation needed early, but ….. later you will need simulation

Go Beyond Textual Requirements

– Use expressiveness of requirement models and trade studies

– Use views to put stakeholder discussions in context

Validate compliance to requirements through simulation

Deployment

– Generate RTL code from architecture + design models



7

Model-Based Systems Engineering + Model-Based Design

T
o

p
-d

o
w

n

Architecture

Design
Integrate MBD with 

MBSE

B
o

tto
m

-u
p

Custom Profiles

Requirements



8

Requirements: Textual, Traceability, Interfaces, Interactions

Establish traceability between 

architecture & design and textual requirements

Define and visualize interfaces using 

Internal Block Diagrams (IBD)

Define interface behaviors using 

Sequence Diagrams (SD)



9

Validate Systems by Re-Using Requirements Models



10

“Systems 

Thinking”



11

Validate System Behavior and Robustness with Fault Injection

Non-intrusive way 

to define and inject 

faults

Analyze impact of 

faults using simulation

almostError

Phase current 

w/fault



12

Generate HDL code from System Architecture incl Detailed Models

Generate traceable/ 

readable RTL code

Validate architecture and 

design before deployment

Interfaces in-sync 

with detailed design



13

The Road Ahead: SysML v2 and the Future of FPGA/SoC Development 



14

Automation and Interoperability



15

DevOps Automation to Ensure Consistent Build Processes

From Desktop …………… to …………… DevOps Automation



16

Automate Locally or in CI with Buildtool 

▪ MATLAB has a growing list of capabilities that necessitate

build tasks, resulting in more ad hoc scripts

▪ The MATLAB Build Tool is a build system that provides a standard 

programming interface to create and run tasks in a uniform and efficient 

way

PackageTest

Testing 

Frameworks

DeployCheck

codeIssues

Generate Compile

https://www.mathworks.com/help/matlab/matlab_prog/overview-of-matlab-build-tool.html


17

Continuous Integration, Delivery and Deployment (CD)

CI = 

Continuous 

Integration

CD = 

Continuous 

Delivery

Develop & test 

models
Check in Test

Build 

& Test
Release

Deploy to 

production

CD = 

Continuous 

Deployment

Use FPGA 

vendor tools for 
bitstream 

generation

Download 

bitstream & SW 
executable and 

deploy to System-

on-Chip

Generating 

HDL and C 
code

Run tests 

periodically 
e.g., with 

every check-in

D
e

s
c
ri
p

ti
o

n
T
o
o

ls

Author the 

models, test 
locally

Check-in 

changes to 
the source 

control system

GitLab

HDL & C Coders

GitLab
Docker agents

AMD Vivado

ARM CompilerMATLAB

Simulink
System Composer

Local 

development

Continuous Integration: CI/CD Automation for Model-Based Design (support package)

CI/CD Automation for Simulink Check (reference book)

https://www.mathworks.com/products/ci-cd-automation.html
https://www.mathworks.com/products/ci-cd-automation.html
https://www.mathworks.com/products/ci-cd-automation.html
https://www.mathworks.com/products/ci-cd-automation.html
https://www.mathworks.com/content/dam/mathworks/mathworks-dot-com/hardware-support/files/ci-cd-automation-simulink-check-reference-book.pdf


18

What is SysML?

SysML is used for:

▪ Modeling complex systems

▪ Visualizing system architecture

▪ Describing system behavior

▪ Verifying system requirements
v1

v2



19

SysMLv2 and Enhanced Interoperability



20

Interoperability in Action

SysMLv2 repository



21

https://www.mathworks.com/products/sysml.html

Where do I start with SysMLv1?

MATLAB Project

Requirements, Links, 

and Allocations

Interfaces

Architecture Models

Sequence

Diagrams

Connector
SysML

import

MathWorks Artifacts

To request the SysML Connector:

Use the SysML Connector to import your SysMLv1 model into MATLAB

Activity

Diagrams

State Machines

SysML v1 

Artifacts

https://www.mathworks.com/products/sysml.html


22
Automation

+
Interoperability

Concluding remarks

Architecture Design

+ +
Simulation

➔
-- well known FPGA/SoC influencer and blogger



23

Questions?

More information


	Slide 1
	Slide 2
	Slide 3
	Slide 4: Challenges – complexity
	Slide 5: How do you create your FPGA architectural block diagrams?
	Slide 6: Challenges ► complexity How do models and simulation help?
	Slide 7: Model-Based Systems Engineering + Model-Based Design
	Slide 8: Requirements: Textual, Traceability, Interfaces, Interactions
	Slide 9: Validate Systems by Re-Using Requirements Models
	Slide 10
	Slide 11: Validate System Behavior and Robustness with Fault Injection
	Slide 12: Generate HDL code from System Architecture incl Detailed Models
	Slide 13: The Road Ahead: SysML v2 and the Future of FPGA/SoC Development 
	Slide 14: Automation and Interoperability
	Slide 15: DevOps Automation to Ensure Consistent Build Processes
	Slide 16: Automate Locally or in CI with Buildtool 
	Slide 17: Continuous Integration, Delivery and Deployment (CD)
	Slide 18: What is SysML?
	Slide 19: SysMLv2 and Enhanced Interoperability
	Slide 20: Interoperability in Action
	Slide 21: Where do I start with SysMLv1?
	Slide 22: Concluding remarks
	Slide 23: Questions?

